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Abstract
The symmetry classification of a class of energy-transport models for
semiconductors is performed. Reduced systems and examples of exact invariant
solutions are shown.

PACS numbers: 72.90.+y, 02.30.−f, 02.30.Jr, 02.30.Hq

1. Introduction

Continuum models for the description of charge carrier transport in semiconductors have
attracted the attention of applied mathematicians and engineers in recent years on account
of their applications in the design of electron devices. The energy-transport models for
semiconductors (hereafter ET models) are macroscopic models that also take into account the
thermal effects related to the electron flow through the crystal at variance with the popular
drift-diffusion [1–3] models that are based on the assumption of isothermal motion.

The evolution equations are given by the balance equations for density and energy of
the charge carriers, coupled to the Poisson equation for the electric potential. The pioneering
models were proposed in [4, 5] on the basis of heuristic argument. A more systematic approach
was followed in [6] starting from a harmonic expansion of the distribution function in the
semiclassical kinetic framework. In these models there is the presence of some arbitrary
functions as the mobilities, whose expression is based on the fitting of experimental data or
Monte Carlo simulations. A recent derivation free of any arbitrary element has been obtained
in [7] from the hydrodynamical model based on the extended thermodynamics [8, 9].

A partial analysis of some mathematical questions as to the existence and uniqueness of
weak solutions can be found in [10, 11] for the model discussed in [6]. Here for the same
model we perform a symmetry classification [12–16] and look for exact invariant solutions
(the extension of this analysis to the model in [7] will be presented elsewhere).

The Lie point symmetries approach gives a systematic way to construct solutions for partial
differential equations (PDEs). Looking for symmetries via the Lie infinitesimal criterion leads
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to the so-called determining system which is a linear PDEs system in the unknown coordinates
of the invariance operator. The determining system, in general, is an over-determined system
whose solution gives not only the coordinates of the invariance operator but also suggestions
on the functional forms of the constitutive functions appearing in the equations. This leads to
the group classification of the considered family of systems of PDEs. For each case present in
the classification, we construct the optimal system of Lie subalgebra [12, 13, 17]. The main
advantage of the use of the optimal system is that it minimizes the effort of searching for all the
possible group-invariant solutions, collecting them into equivalence classes. The knowledge
of invariant transformations allows us to reduce the number of independent variables. In
particular, for problems in one spatial dimension, one can rewrite the original system of
PDEs as a set of ordinary differential equations (ODEs) with considerable simplifications in
searching for exact solutions.

The plan of the paper is as follows. In section 2, a brief review of the energy models is
presented. In section 3, we perform the symmetry classification by determining the functional
form of the constitutive functions for mobilities, energy relaxation time and doping profile,
so that the balance equations admit symmetries. In particular, we recover for the mobilities
the same expressions as those of the energy-transport model of Chen et el [4] (for a similar
analysis of a class of drift-diffusion equations see [18]).

In section 4 the reduction to ODEs is shown and some examples of invariant exact solutions
are presented for suitable doping profiles in the last section. We remark that these solutions
can also be used to test numerical schemes and codes.

2. The mathematical model

The ET models for charge carriers in semiconductors are given by the balance equations for
density and energy density for electrons (and also holes in the bipolar case), coupled to the
Poisson equation for the electric potential

∂n

∂t
+ div J = 0 (1)

∂(nW)

∂t
+ div S − J · ∇φ = nCW (2)

λ2
φ = n − c(x) (3)

where n is the electron density, J the electron momentum density, W the electron energy, S
the energy flux density, nCW the energy production, λ2 the dielectric constant, φ the electric
potential and c(x) the doping concentration that is a given function of the position x. 
 is
the Laplacian operator and div the divergence operator. All the quantities are to be intended
in a scaled form. The scaled variables have been obtained from the original ones by the
transformations

x → x

l̄
t → t

t̄
n → n

c̄
W → W

KBTL
φ → φ

UT

J → J l̄

qµ0UT c̄
S → S l̄

q2µ0U
2
T

CW → CW

q2µ0U
2
T

c → c

c̄
ε → qc̄l̄ 2ε

UT

= λ2
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where t̄ , l̄ and c̄ are typical values of time, length and doping density respectively, q is the
elementary charge, UT = KBTL/q is the thermal voltage, with TL the lattice temperature and
KB the Boltzmann constant, ε is the dielectric permittivity and µ0 is the low field mobility.

The previous evolution equations can be derived as moment equations from the Boltzmann
transport equation for electrons in semiconductors. The various ET models differ for the
closure relations supplied for J ,W,S and CW .

A class of ET models has been derived from the spherical harmonic expansion in [6]. The
general form of the constitutive equations in the mobilities version is

W = 3
2T CW = −

3
2 (T − TL)

τW(T )
(4)

J = −∇ (
µ(1)T n

)
+ µ(1)n∇φ (5)

S = −∇ (
µ(2)T 2n

)
+ µ(2)T n∇φ. (6)

T is the electron temperature, scaled according to T → T
TL
, TL = 1 is the scaled crystal

temperature (taken as constant) and τW is the scaled energy relaxation time depending on T.
µ(i) are the electron mobilities that depend on T as well.

As particular cases we have:

• the model of Chen et al [4]

CW = −
3
2 (T − TL)

τ0
(7)

J = −µ0

(
∇n − n

T
∇φ

)
(8)

S = −3

2
µ0[∇(nT ) − n∇φ] (9)

with µ0 = 1 the scaled low field mobility and τ 0 a positive constant; and
• the model of Lyumkis et al [5]

CW = − 2√
π

T − TL

τ0T 1/2
(10)

J = −2µ0√
π

[
∇ (

nT 1/2
) − n

T 1/2
∇φ

]
(11)

S = −4µ0√
π

[∇ (
nT 3/2

) − nT 1/2∇φ]. (12)

3. The symmetry classification in the one-dimensional case

In the one-dimensional case the general energy transport model is given by the following class
C of PDEs:

nt + Jx = 0 (13)
3

2
(nT )t + Sx + JE +

3

2
n
(T − TL)

τW(T )
= 0 (14)

λ2Ex + n − c(x) = 0. (15)

E is the electric field, which is related to the potential φ in the usual way, E = −φx .
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J and S are the relevant components of the electron momentum and energy flux. They are
related to n, T and E through the constitutive relations

J = −[(
µ(1)(T )T n

)
x

+ µ(1)(T )nE
]

(16)

S = −[(
µ(2)(T )T 2n

)
x

+ µ(2)(T )T nE
]
. (17)

We discuss the symmetry classification of the systems belonging to the class C of PDEs
by the infinitesimal Lie method. The latter allows us to find the infinitesimal generator of
the symmetry transformations and, at the same time, gives the functional dependence of the
constitutive functions µ(1)(T ), µ(2)(T ), τW (T ) and c(x) for which the system does admit
symmetries.

We consider the one-parameter Lie group of infinitesimal transformations in (x, t, n,
T, E)-space given by

t̂ = t + εξ1(x, t, n, T ,E) + O(ε2) (18)

x̂ = x + εξ2(x, t, n, T ,E) + O(ε2) (19)
n̂ = n + εη1(x, t, n, T ,E) + O(ε2) (20)
T̂ = T + εη2(x, t, n, T ,E) + O(ε2) (21)
Ê = E + εη3(x, t, n, T ,E) + O(ε2) (22)

where ε is the group parameter and the associated Lie algebra L is the set of vector fields of
the form

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η1 ∂

∂n
+ η2 ∂

∂T
+ η3 ∂

∂E
. (23)

One then requires that the transformation (18)–(22) leaves invariant the set of solutions of
the system (13)–(15). In other words, one requires that the transformed system has the same
form as the original one.

This yields an over-determined linear system of partial differential equations for the
infinitesimals ξ1, ξ2, η1, η2 and η3, which is called the determining system.

Note that even if the determining system is linear in the infinitesimals, the presence of the
constitutive functions µ(1), µ(2), τW and c makes the equations very complicated.

The second prolongation of X we need is

X̃ = X + ζ 1
1

∂

∂nt
+ ζ 1

2
∂

∂nx
+ ζ 2

1
∂

∂Tt
+ ζ 2

2
∂

∂Tx
+ ζ 3

2
∂

∂Ex

+ ζ 1
22

∂

∂nxx
+ ζ 2

22
∂

∂Txx

where the coefficients ζ ji and ζ i22 (j = 1, 2; i = 1, 2, 3), after setting

(x1, x2) ≡ (t, x) (y1, y2, y3) ≡ (n, T ,E)

yij = ∂yi

∂xj
yijk = ∂2yi

∂xj∂xk
(k = 1, 2)

Dj = ∂

∂xj
+ yij

∂

∂yi
+ yijk

∂

∂yik

are given by

ζ ij = Djη
i − yi1Dj ξ

1 − yi2Dj ξ
2

ζ i22 = D2ζ
i
2 − yi12D2ξ

1 − yi22D2ξ
2.
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Table 1. Lie group classification. µ(1) = µ
(1)
0 T m,µ(2) = µ

(2)
0 T m. c0, τ0, p and q are constitutive

constants.

Case Forms of τW (T ) and c(x) Extensions of LP

I τW arbitrary, c = c0 X2 = ∂
∂x

II τW = τ0(T−TL)

T (m+2) X2 = −p(1 + m)t ∂
∂t

+ ∂
∂x

+ pn ∂
∂n

+ pT ∂
∂T

+ pE ∂
∂E

c = c0 epx

p 
= 0

III τW = τ0(T−TL)

T
m+ 2(p+1)

p+2

X2 = −[2m + p(1 + m)]t ∂
∂t

+ (x + q) ∂
∂x

+ pn ∂
∂n

c = c0(x + q)p + (2 + p)T ∂
∂T

+ (1 + p)E ∂
∂E

p 
= −2

The determining system of (13)–(15) arises from the following invariance conditions

X̃(nt + Jx) = 0

X̃

(
3

2
(nT )t + Sx + JE +

3

2

n(T − TL)

τW (T )

)
= 0

X̃
(
λ2Ex − c(x) + n

) = 0

under the constraints that the variables n, T and E have to satisfy the equations (13)–(15).
The invariance conditions lead to the following result

ξ1 = −[2ma1 + (1 + m)b1]t + b0 (24)
ξ2 = a1x + a0 (25)
η1 = b1n (26)
η2 = (2a1 + b1)T (27)
η3 = (a1 + b1)E (28)

(2a1 + b1)
(
T µ

(1)
T + mµ(1)

)
= 0 (29)

(2a1 + b1)
(
T µ

(2)
T + mµ(2)

)
= 0 (30)

(a1x + a0)cx − b1c = 0 (31)

(2a1 + b1)τW T +
1

T

[
(2a1 + b1)

TL

(TL − T )
+ 2ma1 + (1 + m)b1

]
τW = 0 (32)

where a0, a1, b0, b1 and m are constants.
For µ(1), µ(2), τW and c arbitrary, from (24)–(32), we have that the principal Lie algebra

LP of the system (13)–(15) is one dimensional and it is spanned by the operator

X1 = ∂

∂t
. (33)

Otherwise, we obtain

µ(1) = µ
(1)
0 T m µ(2) = µ

(2)
0 T m (34)

with µ
(1)
0 and µ

(2)
0 constants. In this case the Lie algebras extend to one dimension LP . The

complete Lie group classification for the system (13)–(15) is reported in table 1.

Remark 1. If we set m = −1, one recovers the expressions for J and S of the model of Chen
et al. Similarly if we set m = − 1

2 , one recovers the expressions for J and S of the model of
Lyumkis et al. However in both cases there is a difference in the form of CW .
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Table 2. Non-trivial generators of the optimal systems. a is a real parameter.

Case Generators of the optimal systems

I X0 = a ∂
∂t

+ ∂
∂x

IIa m = −1
X0 = a ∂

∂t
+ ∂

∂x
+ pn ∂

∂n
+ pT ∂

∂T
+ pE ∂

∂E

IIb m 
= −1
X0 = −p(1 + m)t ∂

∂t
+ ∂

∂x
+ pn ∂

∂n
+ pT ∂

∂T
+ pE ∂

∂E

IIIa 2m + p(1 + m) = 0
X0 = a ∂

∂t
+ (x + q) ∂

∂x
+ pn ∂

∂n
+ (2 + p)T ∂

∂T
+ (1 + p)E ∂

∂E

IIIb 2m + p(1 + m) 
= 0
X0 = −[2m + p(1 + m)]t ∂

∂t
+ (x + q) ∂

∂x
+ pn ∂

∂n
+ (2 + p)T ∂

∂T
+ (1 + p)E ∂

∂E

Remark 2. In general, when a system of differential equations admits a Lie group Gr and its
Lie algebraLr is of dimension r > 1, one desires to minimize the search for invariant solutions
by finding the nonequivalent branches of solutions. In fact if two subalgebras are similar, i.e.
they are connected by a transformation belonging to the symmetry group (with Lie algebraLr ),
then their corresponding invariant solutions are connected by the same transformation.
Therefore, it is sufficient to put into one class all similar subalgebras of a given dimension,
say s, and select a representative from each class. The set of the representatives of all these
classes is called an optimal system of order s [12]. In order to find all invariant solutions
with respect to s-dimensional subalgebras, it is sufficient to construct invariant solutions for
the optimal system of order s. The set of invariant solutions obtained in this way is called an
optimal system of invariant solutions.

For the class C of PDEs an optimal system of Lie subalgebras has been obtained in [17].
The results are summarized in table 2.

4. Reduction to ODE systems

One of the advantages of the symmetry analysis is the possibility of finding solutions of the
original system of PDEs by solving a system of ODEs. These systems of ODEs, called reduced
systems, are obtained by introducing suitable new variables, determined as invariant functions
with respect to the infinitesimal generator of the symmetry transformation.

On the basis of the infinitesimal generators of the optimal systems reported in table 2, we
have the following reduced system.

4.1. Case I

The invariance conditions lead to
dt

a
= dx

1
(35)

and give the similarity variable

z = t − ax (36)

and the similarity solutions

n = ω(z) (37)

T = χ(z) (38)
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E = ψ(z) (39)

where ω, χ and ψ are arbitrary functions of the similarity variable z and must be solutions of
the reduced system

ω′ + aµ
(1)
0

[
(ωχmψ)′ − a

(
ωχ(1+m)

)′′] = 0 (40)

aµ
(2)
0

[(
ωχ(1+m)ψ

)′ − a
(
ωχ(2+m)

)′′] − µ
(1)
0

[
ωχmψ − a

(
ωχ(1+m)

)′]
ψ

+
3

2
(ωχ)′ +

3ω

2τW(χ)
(χ − TL) = 0 (41)

λ2aψ ′ − ω + c0 = 0. (42)

Here and in the following cases prime means differentiation with respect to z.

4.2. Case IIa (p 
= 0)

From the invariance conditions one has
dt

a
= dx

1
= dn

pn
= dT

pT
= dE

pE
(43)

and obtains the similarity variable

z = t − ax (44)

and the similarity solutions

n = ω(z) epx (45)
T = χ(z) epx (46)
E = ψ(z) epx (47)

where ω, χ and ψ are arbitrary functions of the similarity variable z and must be solutions of
the reduced system:

a2ω′′ −
[

1

µ
(1)
0

+ a

(
2p +

ψ

χ

)]
ω′ −

[
a

(
ψ

χ

)′
− p

(
p +

ψ

χ

)]
ω = 0 (48)

a2µ
(2)
0 (ωχ)′′ −

(
3

2
+ 4apµ(2)

0

)
(ωχ)′ +

(
4p2µ

(2)
0 − 3

2τ0

)
ωχ

+µ
(2)
0 [2pωψ − a(ωψ)′] + µ

(1)
0

[
−aω′ +

(
p +

ψ

χ

)
ω

]
ψ = 0 (49)

λ2(aψ ′ − pψ) − ω + c0 = 0. (50)

4.3. Case IIb (p(1 + m) 
= 0)

The invariance conditions give

− dt

p(1 + m)t
= dx

1
= dn

pn
= dT

pT
= dE

pE
(51)

wherefrom the similarity variable

z = ln(t)

p(1 + m)
+ x (52)



1758 V Romano and A Valenti

and the similarity solutions

n = ω(z)t−
1

1+m (53)

T = χ(z)t−
1

1+m (54)
E = ψ(z)t−

1
1+m (55)

with ω, χ and ψ arbitrary functions of the similarity variable z and solutions of the reduced
system

µ
(1)
0

[(
ωχ(1+m)

)′′
+ (ωχmψ)′

]
− ω′

p(1 + m)
+

ω

1 + m
= 0 (56)

µ
(2)
0

[(
ωχ(2+m))′′

+
(
ωχ(1+m)ψ

)′]
+ µ

(1)
0

[(
ωχ(1+m))′

+ ωχmψ
]
ψ

− 3

2p(1 + m)
(ωχ)′ +

3

1 + m
ωχ − 3

2τ0
ωχ(2+m) = 0 (57)

λ2ψ ′ + ω − c0 epz = 0. (58)

4.4. Case IIIa

(
m 
= −1, p = − 2m

m+1

)
By proceeding as above, we have

dt

a
= dx

x + q
= dn

pn
= dT

(2 + p)T
= dE

(1 + p)E
(59)

which gives the similarity variable

z = t − a ln(x + q) (60)

and the similarity solutions

n = ω(z)(x + q)p (61)

T = χ(z)(x + q)2+p (62)
E = ψ(z)(x + q)1+p (63)

whereω, χ andψ are arbitrary functions of the similarity variable z and must solve the reduced
system

ω′ + aµ
(1)
0

[
−a

(
ωχ(1+m)

)′′
+ (2 + p)

(
ωχ(1+m)

)′
+ (ωχmψ)′

]
− (1 + p)µ

(1)
0

[
−a

(
ωχ(1+m))′

+ (2 + p)ωχ(1+m) + ωχmψ
]

= 0 (64)

3

2
(ωχ)′ + aµ

(2)
0

[
−a

(
ωχ(2+m))′′

+ 2(2 + p)
(
ωχ(2+m))′

+ (ωχ1+mψ)′
]

− 2(1 + p)µ
(2)
0

[
−a

(
ωχ(2+m))′

+ 2(2 + p)ωχ(2+m) + ωχ1+mψ
]

−µ
(1)
0

[
−a

(
ωχ(1+m))′

+ (2 + p)ωχ(1+m) + ωχmψ
]
ψ +

3

2τ0
ωχ = 0 (65)

λ2[aψ ′ − (1 + p)ψ] − ω + c0 = 0. (66)
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4.5. Case IIIb (2m + p(1 + m) 
= 0, p 
= −2)

In this last case the invariance conditions read

− dt

[2m + p(1 + m)]t
= dx

x + q
= dn

pn
= dT

(2 + p)T
= dE

(1 + p)E
. (67)

One has the similarity variable

z = (x + q)t
1

2m+p(1+m) (68)

and the similarity solutions

n = ω(z)t
− p

2m+p(1+m) (69)

T = χ(z)t
− 2+p

2m+p(1+m) (70)

E = ψ(z)t
− 1+p

2m+p(1+m) . (71)

ω, χ and ψ depend on the similarity variable z and must solve the reduced system

µ
(1)
0

[(
ωχ(1+m))′′

+ (ωχmψ)′
]

− 1

2m + p(1 + m)
(zω′ − pω) = 0 (72)

µ
(2)
0

[(
ωχ(2+m)

)′′
+

(
ωχ(1+m)ψ

)′]
+ µ

(1)
0

[(
ωχ(1+m)

)′
+ ω χmψ

]
ψ

− 3

2[2m + p(1 + m)]
[z(ωχ)′ − 2p(1 + p)ωχ] − 3

2τ0
ωχ

m+ 2(p+1)
p+2 = 0 (73)

λ2ψ ′ + ω − c0z
p = 0. (74)

5. Invariant exact solutions

By solving the reduced systems of the previous section, one gets solutions of the original
system of PDEs.

From the study of the reduced systems, the following classes of exact solutions have been
found.

5.1. Case IIa (p 
= 0)

The reduced system (48)–(50) is autonomous and, under the condition p2 = 3
4µ(2)

0 τ0
, admits

the constant solution

ω = λ2K0 + c0 χ = K0

p2
ψ = −K0

p
(75)

with K0 an arbitrary constant. From (75) the stationary solution for the original PDE system
(13)–(15)

n(x) = (
λ2K0 + c0

)
epx T (x) = K0

p2
epx E(x) = −K0

p
epx (76)

is deduced.
Non-stationary solutions have also been found.
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5.1.1.

n(t, x) = c0 epx − 2µ(1)
0 λ2K0p

3
(

2µ(2)
0 − µ

(1)
0

) eαpx−βp2t (77)

T (t, x) = − 1

p
K0 eαpx−βp2t (78)

E(t, x) = K0 eαpx−βp2t (79)

where

α = 2µ(1)
0

3
(

2µ(2)
0 − µ

(1)
0

) β =
2

(
µ
(1)
0

)2 (
6µ(2)

0 − 5µ(1)
0

)
9

(
2µ(2)

0 − µ
(1)
0

)2

under the conditions

p2 =
27

(
2µ(2)

0 − µ
(1)
0

)2

2µ(1)
0

[
12

(
µ
(2)
0

)2
+ 16µ(1)

0 µ
(2)
0 − 15

(
µ
(1)
0

)2
]
τ0

(80)

a = −
3

(
2µ(2)

0 − µ
(1)
0

)
2

(
µ
(1)
0

)2
p

. (81)

5.1.2.

n(t, x) = c0 epx T (t, x) = −K0

p
e− t

τ0 E(t, x) = K0 e− t
τ0 . (82)

5.2. Case IIb (p(1 + m) 
= 0)

The reduced system has the solution

ω(z) = k1 epz χ(z) = k2 epz ψ(z) = k3 epz

under the conditions

k1 + λ2pk3 − c0 = 0 (83)
k2p(m + 2) + k3 = 0 (84)

µ
(2)
0 (m + 3) + µ

(1)
0 (m + 2)2 [(m + 2)p − 1] − 3

2τ0p2
= 0. (85)

This leads to the stationary solution of system (13)–(15)

n(x) = k1 epx T (x) = k2 epx E(x) = k3 epx. (86)

5.3. Case IIIa

(
m 
= −1, p = − 2m

m+1

)
The reduced system is again autonomous and admits the constant solution

χ0 =
[

3

4(p + 1)(p + 2)τ0µ
(2)
0

] 1
m+1

ψ0 = −(p + 2)χ0

ω0 = c0 + λ2(p + 1)(p + 2)χ0

that gives the homogeneous solution to system (13)–(15)

n = ω0(x + q)p T = χ0(x + q)p+2 E = ψ0(x + q)p+1. (87)
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5.4. Case IIIb (2m + p(1 + m) 
= 0, p 
= −2)

If we set m = −1 and p = 1, a class of stationary solutions is given by

n(x) = (
c0 − 2k3λ

2
)
(x + q) (88)

T (x) = k2(x + q)3 (89)
E(x) = k3(x + q)2 (90)

where k2 is a real parameter and k3 can take on the two values corresponding to the upper or
lower sign

k3 =
±

√(
9

(
µ
(2)
0

)2
− 42µ(1)

0 µ
(2)
0 +

(
µ
(1)
0

)2
)
h2

0k
2
2 + 6h0k

4/3
2 µ

(1)
0 − h0k2

(
3µ(2)

0 + µ
(1)
0

)
2h0µ

(1)
0

provided that the reality condition is satisfied.
For p = 1 but m 
= −1 we find the class of stationary solutions

n(x) = [
c0 + 2k(3m + 4)λ2

]
(x + q) (91)

T (x) = k(x + q)3 (92)
E(x) = −k(3m + 4)(x + q)2 (93)

where k is a real parameter satisfying the relation

k1/3 − 6h0µ
(2)
0 k2(m + 2) = 0.

Remark 3. The solutions found in the cases IIa and IIIb for m = −1 are valid for the constitutive
equations of fluxes of the model of Chen et al. The solutions obtained in the cases IIb, IIIa

and IIIb, when specialized to m = − 1
2 , are valid for the constitutive equations of fluxes of the

model of Lyumkis et al.
These exact solutions can be used as benchmarks for testing numerical codes for energy-

transport models.
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[2] Hänsch W 1991 The Drift-Diffusion Equation and its Applications in MOSFET Modeling (New York: Springer)
[3] Markowich P, Ringhofer C A and Schmeiser C 1990 Semiconductor Equations (New York: Springer)
[4] Chen D, Kan E C, Ravaioli U, Shu C-W and Dutton R 1992 An improved energy-transport model including

nonparabolicity and non-Maxwellian distribution effects IEEE Electron Device Lett. 13 26–8
[5] Lyumkis E, Polsky B, Shir A and Visocky P 1992 Transient semiconductor device simulation including energy

balance equation COMPEL, Int. J. Comput. Math. Electr. Electron. Eng. 11 311–25
[6] Ben Abdallah N and Degong P 1996 On a hierarchy of macroscopic models for semiconductors J. Math. Phys.

37 205–31



1762 V Romano and A Valenti

[7] Romano V 2001 Nonparabolic band hydrodynamical model of silicon semiconductors and simulation of electron
devices Math. Methods Appl. Sci. 24 439–71

[8] Müller I and Ruggeri T 1998 Rational Extended Thermodynamics (Berlin: Springer)
[9] Jou D, Casas-Vazquez J and Lebon G 1993 Extended Irreversible Thermodynamics (Berlin: Springer)

[10] Degong P, Génies S and Jungel A 1998 A steady-state system in nonequilibrium thermodynamics including
thermal and electrical effects Math. Methods. Appl. Sci. 21 1399–413

[11] Degong P, Génies S and Jungel A 1997 A system of parabolic equations in nonequilibrium thermodynamics
including thermal and electrical effects J. Math. Pure Appl. 76 991–1015

[12] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[13] Olver P J 1986 Applications of Lie Groups to Differential Equations (New York: Springer)
[14] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Springer)
[15] Ibragimov N H 1994 CRC Hanbook of Lie Group Analysis of Differential Equations (Boca Raton, FL: CRC

Press)
[16] Fushchych W I and Shtelen W M 1993 Symmetry Analysis and Exact Solutions of Nonlinear Equations of

Mathematical Physics (Dordrecht: Kluwer)
[17] Romano V and Valenti A 2002 Symmetry classification for a class of energy-transport models Proc. WASCOM

(2001) at press
[18] Romano V and Torrisi M 1999 Application of weak equivalence transformations to a group analysis of a

drift-diffusion model J. Phys. A: Math. Gen. 32 7953–63


